Dinitroaniline Herbicide Resistance and Mechanisms in Weeds


Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades.

.

Dinitroanilines are microtubule inhibitors, targeting tubulin proteins in plants and protists. Dinitroaniline herbicides, such as trifluralin, pendimethalin and oryzalin, have been used as pre-emergence herbicides for weed control for decades. With widespread resistance to post-emergence herbicides in weeds, the use of pre-emergence herbicides such as dinitroanilines has increased, in part, due to relatively slow evolution of resistance in weeds to these herbicides. Target-site resistance (TSR) to dinitroaniline herbicides due to point mutations in α-tubulin genes has been confirmed in a few weedy plant species. Of particular interest is the resistance mutation Arg-243-Met identified from dinitroaniline-resistant L. rigidum that causes helical growth when plants are homozygous for the mutation.
The recessive nature of the TSR, plus possible fitness cost for some resistance mutations, likely slows resistance evolution. Furthermore, non-target-site resistance (NTSR) to dinitroanilines has been rarely reported and only confirmed in Lolium rigidum due to enhanced herbicide metabolism (metabolic resistance). A cytochrome P450 gene (CYP81A10) has been recently identified in L. rigidum that confers resistance to trifluralin. Moreover, TSR and NTSR have been shown to co-exist in the same weedy species, population, and plant. The implication of knowledge and information on TSR and NTSR in management of dinitroaniline resistance is discussed.

Dinitroanilines represent a class of chemicals with a structure containing two nitro groups and an aromatic amine, aniline. Originally discovered in evaluations of dyes and dye chemical synthesis intermediates, dinitroanilines grew to be widely used in agriculture, industry and medical science. In agriculture, dinitroanilines are mainly used as pre-emergence herbicides to control grass and some broadleaf weeds. The commercialized dinitroaniline herbicides so far include trifluralin, pendimethalin, ethalfluralin, oryzalin, butralin, benefin/benfluralin and prodiamine. The first dinitroaniline herbicide, trifluralin, was commercialized in the 1960s in the United States. Originally it was used in soybean fields by pre-plant soil-incorporation for grass weed control. Later on, trifluralin was introduced into Latin America and Asia Pacific and extensively used in sugarcane and soybean in Brazil, and Australian cereal and legume fields. With the introduction of newly developed, highly efficient post-emergence ALS- and ACCase-inhibitors in 1980s, trifluralin usage declined and the trifluralin market was significantly replaced by these newer herbicides.
However, due to the rapid resistance evolution to these newer, post-emergence herbicides and the adoption of no-till or reduced tillage techniques for soil and moisture conservation, trifluralin has resurged in many markets. According to data from the Brazilian Institute of Environment and Renewable Natural Resources, sales of trifluralin comprised 1,887 tons in 2019. In the United States, trifluralin was among the 25 most used pesticides in agriculture, and the estimated usage ranged from 1361 to 3175 tons in 2012. In recent years trifluralin and pendimethalin have been the two most significant dinitroaniline herbicides used, estimated to represent a global farm gate value (the dollar amount of sales of product made to the actual farmer) of $USD 525 million. When considering trifluralin/pendimethalin, over 30% of the farm gate value is within the Australian and North American markets, and 50% of farm gate value is in cereals, cotton, vegetables and soybean. Controlling weed populations resistant to other herbicide chemistries is generally accepted as a significant factor driving dinitroaniline herbicide use in these regions and crops.

14 Views

Comments